

DEPOT - File Storage Made Easy

Welcome to the DEPOT Documentation.
DEPOT is a framework for easily storing and serving files in
web applications on Python2.6+ and Python3.2+.

Depot can be used Standalone or
with your ORM to quickly provide
attachment support to your model.

Modern web applications need to rely on a huge amount of
stored images, generated files and other data which is usually
best to keep outside of your database. DEPOT provides a
simple and effective interface for storing your files on
a storage backend at your choice (Local, S3, GridFS, Google Cloud Storage)
and easily relate them to your application models (SQLAlchemy, Ming)
like you would for plain data.

Depot is a swiss army knife for files that provides:

	Multiple backends: Store your data on all of them with a single API

	In Memory storage depot.io.memory.MemoryFileStorage provided for tests suite.
Provides faster tests and no need to clean-up fixtures.

	Meant for Evolution: Change the backend anytime you want, old data will continue to work

	Integrates with your ORM: When using SQLAlchemy, attachments are handled like a
plain model attribute. It’s also session ready: Rollback causes the files to be deleted.

	Smart File Serving: When the backend already provides a public HTTP endpoint (like S3)
the WSGI depot.middleware.DepotMiddleware will redirect to the public address
instead of loading and serving the files by itself.

	Flexible: The depot.manager.DepotManager will handle configuration,
middleware creation and files for your application, but if you want you can manually
create multiple depots or middlewares without using the manager.

DEPOT was presented at PyConUK 2014 and PyConFR 2014, for a short presentation
you can have a look at the PyConFR slides:

 Getting Started with Depot

Getting Started with Depot

Configuring DepotManager

The DepotManager is the entity in charge of configuring and handling file storages inside your
application. To start saving files the first required step is to configure a file storage through
the DepotManager.

This can be done using DepotManager.configure() which accepts a storage name (used
to identify the storage in case of multiple storages) and a set of configuration options:

DepotManager.configure('default', {
 'depot.storage_path': './files'
})

By default a depot.io.local.LocalFileStorage storage is configured, LocalFileStorage
saves files on the disk at the storage_path. You can use one of the available
storages through the .backend option. To store data on GridFS you would use:

DepotManager.configure('my_gridfs', {
 'depot.backend': 'depot.io.gridfs.GridFSStorage',
 'depot.mongouri': 'mongodb://localhost/db'
})

Every other option apart the .backend one will be passed to the storage as
a constructor argument. You can even use your own storage by setting the full python
path of the class you want to use.

By default the first configured storage is the default one, which will be used whenever
no explict storage is specified, to change the default storage you can use
DepotManager.set_default() with the name of the storage you want to make the
default one.

Getting a Storage

Once you have configured at least one storage, you can get it back using the
DepotManager.get() method. If you pass a specific storage name it will retrieve
the storage configured for that name:

depot = DepotManager.get('my_gridfs')

Otherwise the default storage can be retrieved by omitting the name argument:

depot = DepotManager.get()

Save and Manage Files

Saving and Retrieving Files

Once you have a working storage, saving files is as easy as calling the FileStorage.create()
method passing the file (or the bytes object) you want to store:

depot = DepotManager.get()
fileid = depot.create(open('/tmp/file.png'))

The returned fileid will be necessary when you want to get back the stored file.
By default the name, content_type and all the properties available through the
StoredFile object are automatically detect from the argument file object.

If you want to explicitly set filename and content type they can be passed as arguments
to the create method:

fileid = depot.create(open('/tmp/file.png'), 'thumbnail.png', 'image/png')

Getting the file back can be done using FileStorage.get() from the storage itself:

stored_file = depot.get(fileid)

Getting back the file will only retrieve the file metadata and will return a StoredFile
object. This object can be used like a normal Python file object,
so if you actually want to read the file content you should then call the read method:

stored_file.content_type # This will be 'image/png'
image = stored_file.read()

If you don’t have the depot instance available, you can use the DepotManager.get_file()
method which takes the path of the stored file. Paths are in the form depot_name/fileid:

stored_file = DepotManager.get_file('my_gridfs/%s' % fileid)

Replacing and Deleting Files

If you don’t need a file anymore it can easily be deleted using the FileStorage.delete()
method with the file id:

depot.delete(fileid)

The delete method is guaranteed to be idempotent, so calling it multiple times will
not lead to errors.

The storage can also be used to replace existing files, replacing the content of a file will
actually also replace the file metadata:

depot.replace(fileid, open('/tmp/another_image.jpg'),
 'thumbnail.jpg', 'image/png')

This has the same behavior of deleting the old file and storing a new one, but instead of
generating a new id it will reuse the existing one. As for the create call the filename
and content type arguments can be omitted and will be detected from the file itself when
available.

Storing data as files

Whenever you do not have a real file (often the case with web uploaded content), you might
not be able to retrieve the name and the content type from the file itself, of those values
might be wrong.

In such case depot.io.utils.FileIntent can be provided to DEPOT instead of the actual file,
depot.io.utils.FileIntent can be used to explicitly tell DEPOT which filename and
content_type to use to store the file. Also non files can be provided to FileIntent to store raw
data:

Works with file objects
file_id = self.fs.create(
 FileIntent(open('/tmp/file', 'rb'), 'file.txt', 'text/plain')
)

Works also with bytes
file_id = self.fs.create(
 FileIntent(b'HELLO WORLD', 'file.txt', 'text/plain')
)

f = self.fs.get(file_id)
assert f.content_type == 'text/plain'
assert f.filename == 'file.txt'
assert f.read() == b'HELLO WORLD'

Depot for the Web

File Metadata

As Depot has been explicitly designed for web applications development, it will provide
all the file metadata which is required for HTTP headers when serving files or which are common
in the web world.

This is provided by the StoredFile you retrieve from the file storage and includes:

	filename -> Original name of the file, if you need to serve it to the user for download.

	content_type -> File content type, for the response content type when serving file back
the file to the browser.

	last_modified -> Can be used to implement caching and last modified header in HTTP.

	content_length -> Size of the file, is usually the content length of the HTTP response when
serving the file back.

Serving Files on HTTP

In case of storages that directly support serving files on HTTP
(like depot.io.awss3.S3Storage , depot.io.boto3.S3Storage and depot.io.gcs.GCSStorage) the
stored file itself can be retrieved at the url provided by StoredFile.public_url.
In case the public_url is None it means that the storage doesn’t provide direct HTTP access.

In such case files can be served using a DepotMiddleware WSGI middleware. The
DepotMiddlware supports serving files from any backend, supports ETag caching and in case of
storages directly supporting HTTP it will just redirect the user to the storage itself.

Unless you need to achieve maximum performances it is usually a good approach to just use
the WSGI Middleware and let it serve all your files for you:

app = DepotManager.make_middleware(app)

By default the Depot middleware will serve the files at the /depot URL using their path
(the same as passed to the DepotManager.get_file() method). So in case you need to retrieve
a file with id 3774a1a0-0879-11e4-b658-0800277ee230 stored into my_gridfs depot the
URL will be /depot/my_gridfs/3774a1a0-0879-11e4-b658-0800277ee230.

Changing the base URL and caching can be done through the DepotManager.make_middleware()
options, any option passed to make_middleware will be forwarded to DepotMiddleware.

Handling Multiple Storages

Using Multiple Storages

Multiple storage can be used inside the same application, most common operations require
the storage itself or the full file path, so you can use multiple storage without risk
of collisions.

To start using multiple storage just call the DepotManager.configure() multiple times
and give each storage a unique name. You will be able to retrieve the correct storage by name.

Switching Default Storage

Once you started uploading files to a storage, it is best to avoid configuring another
storage to the same name. Doing that will probably break all the previously uploaded files
and will cause confusion.

If you want to switch to a different storage for saving your files just configure two
storage giving the new storage an unique name and switch the default storage using
the DepotManager.set_default() function.

Replacing a Storage through Aliases

Originally DEPOT only permitted switching the default storage, that way you could
replace the storage in use whenever you needed and keep the old files around as the
previous storage was still available. This was by the way only permitted for the default
storage, since version 0.0.7 the DepotManager.alias() feature is provided
which permits to assign alternative names for a storage.

If you only rely on the alternative name and never use the real storage name, you will
be able to switch the alias to whatever new storage you want while the files previously
uploaded to the old storage keep wFor example if you are storing all your user avatars locally you might have
a configuration like:

DepotManager.configure('local_avatars', {
 'depot.storage_path': '/var/www/lfs'
})
DepotManager.alias('avatar', 'local_avatars')

storage = DepotManager.get('avatar')
fileid = storage.create(open('/tmp/file.png'), 'thumbnail.png', 'image/png')

Then when switching your avatars to GridFS you might switch your configuration to something like:

DepotManager.configure('local_avatars', {
 'depot.storage_path': '/var/www/lfs'
})
DepotManager.configure('gridfs_avatars', {
 'depot.backend': 'depot.io.gridfs.GridFSStorage',
 'depot.mongouri': 'mongodb://localhost/db'
})
DepotManager.alias('avatar', 'gridfs_avatars')

storage = DepotManager.get('avatar')
fileid = storage.create(open('/tmp/file.png'), 'thumbnail.png', 'image/png')

Note

While you can keep using the avatar name for the storage when saving files, it’s
important that the local_avatars storage continues to be configured as all the
previously uploaded avatars will continue to be served from there.

Performing Backups between Storages

When in need to perform a backup between two storages, the best practice is to
rely on the backend specific tools. Those are usually faster than trying to copy
each file one by one in python.

In case you have the need to perform backups through the DEPOT apis themselves,
you can configure a second FileStorage where you can copy all the files
using the second storage FileStorage.replace() method:

DepotManager.configure('local_avatars', {
 'depot.storage_path': '/var/www/lfs'
})
DepotManager.configure('backup_avatars', {
 'depot.storage_path': '/var/www/lfs_backup'
})

storage = DepotManager.get('local_avatars')
backup = DepotManager.get('backup_avatars')

for fileid in storage.list():
 f = storage.get(fileid)
 backup.replace(f, f)

Note

This backup method will be very slow compared to native backup tools of the
storage in use. As it has to download the file locally to reupload it to the
backup storage.

 Depot with Database

Depot with Database

Depot provides built-in support for attachments to models, uploading a file
and attaching it to a database entry is as simple as assigning the file itself
to a model field.

Attaching to Models

Attaching files to models is as simple as declaring a field on the model itself,
support is currently provided for SQLAlchemy through the
depot.fields.sqlalchemy.UploadedFileField and for Ming (MongoDB) through
the depot.fields.ming.UploadedFileProperty:

from depot.fields.sqlalchemy import UploadedFileField

class Document(Base):
 __tablename__ = 'document'

 uid = Column(Integer, autoincrement=True, primary_key=True)
 name = Column(Unicode(16), unique=True)

 content = Column(UploadedFileField)

To actually store the file into the Document, assigning it to the content property
is usually enough, just like files uploaded using FileStorage.create() both
file objects, cgi.FieldStorage and bytes can be used:

Store documents with attached files, the source can be a file or bytes
doc = Document(name=u'Foo',
 content=open('/tmp/document.xls'))
DBSession.add(doc)

Note

In case of Python3 make sure the file is open in byte mode.

Depot will upload files to the default storage, to change where files are uploaded
use DepotManager.set_default().

Uploaded Files Information

Whenever a supported object is assigned to a UploadedFileField or
UploadedFileProperty it will be converted to a UploadedFile object.

This is the same object you will get back when reloading the models from database and
apart from the file itself which is accessible through the .file property, it provides
additional attributes described into the UploadedFile documentation itself.

Most important property is probably the .url property which provides an URL where the
file can be accessed in case the storage supports HTTP or the DepotMiddleware is
available in your WSGI application.

Uploading on a Specific Storage

By default all the files are uploaded on the default storage (the one
returned by DepotManager.get_default(). This can be changed by
passing a upload_storage argument explicitly to the database field declaration:

from depot.fields.sqlalchemy import UploadedFileField

class Document(Base):
 __tablename__ = 'document'

 uid = Column(Integer, autoincrement=True, primary_key=True)
 name = Column(Unicode(16), unique=True)

 content = Column(UploadedFileField(upload_storage='another_storage'))

If the specified upload_storage is an alias to another storage, the
file will actually keep track of the real storage, so that when the alias
is switched to another storage, previously uploaded files continue to get
served from the old storage.

Session Awareness

Whenever an object is deleted or a rollback is performed the files uploaded
during the unit of work or attached to the deleted objects are automatically deleted.

This is performed out of the box for SQLAlchemy, but requires the DepotExtension
to be registered as a session extension for Ming.

Note

Ming doesn’t currently provide an entry point for session clear, so files
uploaded without a session flush won’t be deleted when the session is removed.

Custom Behaviour in Attachments

Often attaching a file to the model is not enough, if a video is uploaded you probably
want to convert it to a supported format. Or if a big image is uploaded you might want
to scale it down.

Most simple changes can be achieved using Filters, filters can create thumbnails of
an image or trigger actions when the file gets uploaded, multiple filters can be specified
as a list inside the filters parameter of the column. More complex actions like
editing the content before it gets uploaded can be achieved subclassing
UploadedFile and passing it as column upload_type.

Attachment Filters

File filters are created by subclassing FileFilter class, the only required
method to implement is FileFilter.on_save() which you are required implement with
the actions you want to perform. The method will receive the uploaded file (after it already
got uploaded) and can add properties to it.

Inside filters the original content is available as a property of the uploaded file, by
accessing original_content you can read the original content but not modify it, as
the file already got uploaded changing the original content has no effect.

If you need to store additional files, only use the UploadedFile.store_content()
method so that they are correctly tracked by the unit of work and deleted when the
associated document is deleted.

A filter that creates a thumbnail for an image would look like:

from depot.io import utils
from PIL import Image
from io import BytesIO

class WithThumbnailFilter(FileFilter):
 def __init__(self, size=(128,128), format='PNG'):
 self.thumbnail_size = size
 self.thumbnail_format = format

 def on_save(self, uploaded_file):
 content = utils.file_from_content(uploaded_file.original_content)

 thumbnail = Image.open(content)
 thumbnail.thumbnail(self.thumbnail_size, Image.BILINEAR)
 thumbnail = thumbnail.convert('RGBA')
 thumbnail.format = self.thumbnail_format

 output = BytesIO()
 thumbnail.save(output, self.thumbnail_format)
 output.seek(0)

 thumb_file_name = 'thumb.%s' % self.thumbnail_format.lower()

 # If you upload additional files do it with store_content
 # to ensure they are correctly tracked by unit of work and
 # removed on model deletion.
 thumb_path, thumb_id = uploaded_file.store_content(output,
 thumb_file_name)
 thumb_url = DepotManager.get_middleware().url_for(thumb_path)

 uploaded_file['thumb_id'] = thumb_id
 uploaded_file['thumb_path'] = thumb_path
 uploaded_file['thumb_url'] = thumb_url

To use it, just provide the filters parameter in your UploadedFileField
or UploadedFileProperty:

class Document(DeclarativeBase):
 __tablename__ = 'docu'

 uid = Column(Integer, autoincrement=True, primary_key=True)
 name = Column(Unicode(16), unique=True)

 photo = Column(UploadedFileField(filters=[WithThumbnailFilter()]))

As UploadedFile remembers every value/attribute stored before saving it on
the database, all the thumb_id, thumb_path and thumb_url values will be available
when loading back the document:

>>> d = DBSession.query(Document).filter_by(name='Foo').first()
>>> print d.photo.thumb_url
/depot/default/5b1a489e-0d33-11e4-8e2a-0800277ee230

Custom Attachments

Filters are convenient and can be mixed together to enable multiple behaviours when
a file is uploaded, but they have a limit: They cannot modify the uploaded file or
the features provided when the file is retrieved from the database.

To avoid this limit users can specify their own upload type by subclassing
UploadedFile. By specializing the UploadedFile.process_content() method
it is possible to change the content before it’s stored and provide additional attributes.

Whenever the stored document is retrieved from the database, the file will be recovered
with the same type specified as the upload_type, so any property or method provided
by the specialized type will be available also when the file is loaded back.

A possible use case for custom attachments is ensure an image is uploaded at
a maximum resolution:

from depot.io import utils
from depot.fields.upload import UploadedFile
from depot.io.interfaces import FileStorage
from PIL import Image
from depot.io.utils import INMEMORY_FILESIZE
from tempfile import SpooledTemporaryFile

class UploadedImageWithMaxSize(UploadedFile):
 max_size = 1024

 def process_content(self, content, filename=None, content_type=None):
 # As we are replacing the main file, we need to explicitly pass
 # the filanem and content_type, so get them from the old content.
 __, filename, content_type = FileStorage.fileinfo(content)

 # Get a file object even if content was bytes
 content = utils.file_from_content(content)

 uploaded_image = Image.open(content)
 if max(uploaded_image.size) >= self.max_size:
 uploaded_image.thumbnail((self.max_size, self.max_size),
 Image.BILINEAR)
 content = SpooledTemporaryFile(INMEMORY_FILESIZE)
 uploaded_image.save(content, uploaded_image.format)

 content.seek(0)
 super(UploadedImageWithMaxSize, self).process_content(content,
 filename,
 content_type)

Using it to ensure every uploaded image has a maximum resolution of 1024x1024 is
as simple as passing it to the column:

class Document(DeclarativeBase):
 __tablename__ = 'docu'

 uid = Column(Integer, autoincrement=True, primary_key=True)
 name = Column(Unicode(16), unique=True)

 photo = Column(UploadedFileField(upload_type=UploadedImageWithMaxSize))

When saved the image will be automatically resized to 1024 when bigger than the
maximum allowed size.

 API Reference

API Reference

This part of the documentation covers all the public classes in Depot.

Application Support

	
class depot.manager.DepotManager

	Takes care of managing the whole Depot environment for the application.

DepotManager tracks the created depots, the current default depot,
and the WSGI middleware in charge of serving files for local depots.

While this is used to create the default depot used by the application it can
also create additional depots using the new() method.

In case you need to migrate your application to a different storage while
keeping compatibility with previously stored file simply change the default depot
through set_default() all previously stored file will continue to work
on the old depot while new files will be uploaded to the new default one.

	
classmethod configure(name, config, prefix='depot.')

	Configures an application depot.

This configures the application wide depot from a settings dictionary.
The settings dictionary is usually loaded from an application configuration
file where all the depot options are specified with a given prefix.

The default prefix is depot., the minimum required setting
is depot.backend which specified the required backend for files storage.
Additional options depend on the choosen backend.

	
classmethod from_config(config, prefix='depot.')

	Creates a new depot from a settings dictionary.

Behaves like the configure() method but instead of configuring the application
depot it creates a new one each time.

	
classmethod get(name=None)

	Gets the application wide depot instance.

Might return None if configure() has not been
called yet.

	
classmethod get_default()

	Retrieves the current application default depot

	
classmethod get_file(path)

	Retrieves a file by storage name and fileid in the form of a path

Path is expected to be storage_name/fileid.

	
classmethod make_middleware(app, **options)

	Creates the application WSGI middleware in charge of serving local files.

A Depot middleware is required if your application wants to serve files from
storages that don’t directly provide and HTTP interface like
depot.io.local.LocalFileStorage and depot.io.gridfs.GridFSStorage

	
classmethod set_default(name)

	Replaces the current application default depot

	
classmethod url_for(path)

	Given path of a file uploaded on depot returns the url that serves it

Path is expected to be storage_name/fileid.

	
class depot.middleware.DepotMiddleware(app, mountpoint='/depot', cache_max_age=604800, replace_wsgi_filewrapper=False)

	WSGI Middleware in charge of serving Depot files.

Usually created using depot.manager.DepotManager.make_middleware(),
it’s a WSGI middleware that serves files stored inside depots that do not
provide a public HTTP url. For depot that provide a public url the
request is redirected to the public url.

In case you have issues serving files with your WSGI server your can try
to set replace_wsgi_filewrapper=True which forces DEPOT to use its own
internal FileWrapper instead of the one provided by your WSGI server.

Database Support

	
class depot.fields.sqlalchemy.UploadedFileField(filters=(), upload_type=<class 'depot.fields.upload.UploadedFile'>, upload_storage=None, *args, **kw)

	Provides support for storing attachments to SQLAlchemy models.

UploadedFileField can be used as a Column type to store files
into the model. The actual file itself will be uploaded to the
default Storage, and only the depot.fields.upload.UploadedFile
information will be stored on the database.

The UploadedFileField is transaction aware, so it will delete
every uploaded file whenever the transaction is rolled back and will
delete any old file whenever the transaction is committed. This is
the reason you should never associate the same depot.fields.upload.UploadedFile
to two different UploadedFileField, otherwise you might delete a file
already used by another model. It is usually best to just set the file
or bytes as content of the column and let the UploadedFileField
create the depot.fields.upload.UploadedFile by itself whenever it’s content is set.

	
impl

	alias of sqlalchemy.sql.sqltypes.Unicode

	
load_dialect_impl(dialect)

	Return a TypeEngine object corresponding to a dialect.

This is an end-user override hook that can be used to provide
differing types depending on the given dialect. It is used
by the TypeDecorator implementation of type_engine()
to help determine what type should ultimately be returned
for a given TypeDecorator.

By default returns self.impl.

	
process_bind_param(value, dialect)

	Receive a bound parameter value to be converted.

Custom subclasses of _types.TypeDecorator should override
this method to provide custom behaviors for incoming data values.
This method is called at statement execution time and is passed
the literal Python data value which is to be associated with a bound
parameter in the statement.

The operation could be anything desired to perform custom
behavior, such as transforming or serializing data.
This could also be used as a hook for validating logic.

	Parameters

	
	value – Data to operate upon, of any type expected by
this method in the subclass. Can be None.

	dialect – the Dialect in use.

See also

types_typedecorator

_types.TypeDecorator.process_result_value()

	
process_result_value(value, dialect)

	Receive a result-row column value to be converted.

Custom subclasses of _types.TypeDecorator should override
this method to provide custom behaviors for data values
being received in result rows coming from the database.
This method is called at result fetching time and is passed
the literal Python data value that’s extracted from a database result
row.

The operation could be anything desired to perform custom
behavior, such as transforming or deserializing data.

	Parameters

	
	value – Data to operate upon, of any type expected by
this method in the subclass. Can be None.

	dialect – the Dialect in use.

See also

types_typedecorator

_types.TypeDecorator.process_bind_param()

	
class depot.fields.ming.UploadedFileProperty(filters=(), upload_type=<class 'depot.fields.upload.UploadedFile'>, upload_storage=None)

	Provides support for storing attachments to Ming MongoDB models.

UploadedFileProperty can be used as a field type to store files
into the model. The actual file itself will be uploaded to the
default Storage, and only the depot.fields.upload.UploadedFile
information will be stored on the database.

The UploadedFileProperty is UnitOfWork aware, so it will delete
every uploaded file whenever unit of work is flushed and deletes a Document
that stored files or changes the field of a document storing files. This is
the reason you should never associate the same depot.fields.upload.UploadedFile
to two different UploadedFileProperty, otherwise you might delete a file
already used by another document. It is usually best to just set the file
or bytes as content of the column and let the UploadedFileProperty
create the depot.fields.upload.UploadedFile by itself whenever it’s content is set.

Warning

As the Ming UnitOfWork does not notify any event in case it gets cleared instead
of being flushed all the files uploaded before clearing the unit of work will be
already uploaded but won’t have a document referencing them anymore, so DEPOT will
be unable to delete them for you.

	
class depot.fields.ming.DepotExtension(session)

	Extends the Ming Session to track files.

Deletes old files when an entry gets removed or replaced,
apply this as a Ming SessionExtension according to Ming
documentation.

	
after_flush(obj=None)

	After the session is flushed for obj

If obj is None it means all the objects in
the UnitOfWork which can be retrieved by iterating
over ODMSession.uow

	
before_flush(obj=None)

	Before the session is flushed for obj

If obj is None it means all the objects in
the UnitOfWork which can be retrieved by iterating
over ODMSession.uow

	
class depot.fields.interfaces.DepotFileInfo(content, depot_name=None)

	Keeps information on a content related to a specific depot.

By itself the DepotFileInfo does nothing, it is required to implement
a process_content() method that actually saves inside the
file info the information related to the content. The only information
which is saved by default is the depot name itself.

It is a specialized dictionary that provides also attribute style access,
the dictionary parent permits easy encoding/decoding to most marshalling
systems.

	
process_content(content, filename=None, content_type=None)

	Process content in the given depot.

This is implemented by subclasses to provide some kind of behaviour on the
content in the related Depot. The default implementation is provided by
depot.fields.upload.UploadedFile which stores the content into
the depot.

	
class depot.fields.interfaces.FileFilter

	Interface that must be implemented by file filters.

File filters get executed whenever a file is stored on the database
using one of the supported fields. Can be used to add additional data
to the stored file or change it. When file filters are run the file
has already been stored.

	
on_save(uploaded_file)

	Filters are required to provide their own implementation

	
class depot.fields.upload.UploadedFile(content, depot_name=None)

	Simple depot.fields.interfaces.DepotFileInfo implementation that stores files.

Takes a file as content and uploads it to the depot while saving around
most file information. Pay attention that if the file gets replaced
through depot manually the UploadedFile will continue to have the old data.

Also provides support for encoding/decoding using JSON for storage inside
databases as a plain string.

	Default attributes provided for all UploadedFile include:

	
	filename - This is the name of the uploaded file

	file_id - This is the ID of the uploaded file

	
	path - This is a depot_name/file_id path which can

	be used with DepotManager.get_file() to retrieve the file

	content_type - This is the content type of the uploaded file

	uploaded_at - This is the upload date in YYYY-MM-DD HH:MM:SS format

	url - Public url of the uploaded file

	file - The depot.io.interfaces.StoredFile instance of the stored file

	
process_content(content, filename=None, content_type=None)

	Standard implementation of DepotFileInfo.process_content()

This is the standard depot implementation of files upload, it will
store the file on the default depot and will provide the standard
attributes.

Subclasses will need to call this method to ensure the standard
set of attributes is provided.

Filters

	
class depot.fields.filters.thumbnails.WithThumbnailFilter(size=(128, 128), format='PNG')

	Uploads a thumbnail together with the file.

Takes for granted that the file is an image.
The resulting uploaded file will provide three additional
properties named:

	thumb_X_id -> The depot file id

	thumb_X_path -> Where the file is available in depot

	thumb_X_url -> Where the file is served.

Where X is the resolution specified as size in the
filter initialization. By default this is (128, 128)?so
you will get thumb_128x128_id, thumb_128x128_url and
so on.

Warning

Requires Pillow library

Specialized FileTypes

	
class depot.fields.specialized.image.UploadedImageWithThumb(content, depot_name=None)

	Uploads an Image with thumbnail.

The default thumbnail format and size are PNG@128x128, those can be changed
by inheriting the UploadedImageWithThumb and replacing the
thumbnail_format and thumbnail_size class properties.

The Thumbnail file is accessible as .thumb_file while the
thumbnail url is .thumb_url.

Warning

Requires Pillow library

Storing Files

	
class depot.io.interfaces.StoredFile(file_id, filename=None, content_type=None, last_modified=None, content_length=None)

	Interface for already saved files.

	It provides metadata on the stored file through following properties:

	
	file_id

	filename

	content_type

	last_modified

	content_length

Already stored files can only be read back, so they are required to only provide
read(self, n=-1), close() methods and closed property so that they
can be read.

To replace/overwrite a file content do not try to call the write method,
instead use the storage backend to replace the file content.

	
close(*args, **kwargs)

	Closes the file.

After closing the file it won’t be possible to read
from it anymore. Some implementation might not do anything
when closing the file, but they still are required to prevent
further reads from a closed file.

	
closed

	Returns if the file has been closed.

When closed return True it won’t be possible
to read anoymore from this file.

	
fileno()

	Returns underlying file descriptor if one exists.

An IOError is raised if the IO object does not use a file descriptor.

	
flush()

	Flush write buffers, if applicable.

This is not implemented for read-only and non-blocking streams.

	
isatty()

	Return whether this is an ‘interactive’ stream.

Return False if it can’t be determined.

	
name

	This is the filename of the saved file

If a filename was not available when the file was created
this will return “unnamed” as filename.

	
next

	

	
public_url

	The public HTTP url from which file can be accessed.

When supported by the storage this will provide the
public url to which the file content can be accessed.
In case this returns None it means that the file can
only be served by the DepotMiddleware itself.

	
read(n=-1)

	Reads n bytes from the file.

If n is not specified or is -1 the whole
file content is read in memory and returned

	
readable()

	Returns if the stored file is readable or not

Usually all stored files are readable

	
readline()

	Read and return a line from the stream.

If limit is specified, at most limit bytes will be read.

The line terminator is always b’n’ for binary files; for text
files, the newlines argument to open can be used to select the line
terminator(s) recognized.

	
readlines()

	Return a list of lines from the stream.

hint can be specified to control the number of lines read: no more
lines will be read if the total size (in bytes/characters) of all
lines so far exceeds hint.

	
seek()

	Change stream position.

Change the stream position to the given byte offset. The offset is
interpreted relative to the position indicated by whence. Values
for whence are:

	0 – start of stream (the default); offset should be zero or positive

	1 – current stream position; offset may be negative

	2 – end of stream; offset is usually negative

Return the new absolute position.

	
seekable()

	Returns if the stored file is seekable or not

By default stored files are not seekable

	
tell()

	Return current stream position.

	
truncate()

	Truncate file to size bytes.

File pointer is left unchanged. Size defaults to the current IO
position as reported by tell(). Returns the new size.

	
writable()

	Returns if the stored file is writable or not

Stored files are not writable, you should rely on the relative
FileStorage to overwrite their content

	
class depot.io.interfaces.FileStorage

	Interface for storage providers.

The FileStorage base class declares a standard interface for storing and retrieving files
in an underlying storage system.

Each storage system implementation is required to provide this interface to correctly work
with filedepot.

	
create(content, filename=None, content_type=None)

	Saves a new file and returns the ID of the newly created file.

content parameter can either be bytes, another file object
or a cgi.FieldStorage. When filename and content_type
parameters are not provided they are deducted from the content itself.

	
delete(file_or_id)

	Deletes a file. If the file didn’t exist it will just do nothing.

	
exists(file_or_id)

	Returns if a file or its ID still exist.

	
static fileid(file_or_id)

	Gets the ID of a given StoredFile

If the given parameter is already a StoredFile id it will
directly return it.

	
static fileinfo(fileobj, filename=None, content_type=None, existing=None)

	Tries to extract from the given input the actual file object, filename and content_type

This is used by the create and replace methods to correctly deduce their parameters
from the available information when possible.

	
get(file_or_id)

	Opens the file given by its unique id.

This operation is guaranteed to return
a StoredFile instance or should raise IOError
if the file is not found.

	
list()

	Returns a list of file IDs that exist in the Storage.

Depending on the implementation there is the possibility that this returns more IDs
than there have been created. Therefore this method is NOT guaranteed to be RELIABLE.

	
replace(file_or_id, content, filename=None, content_type=None)

	Replaces an existing file, an IOError is raised if the file didn’t already exist.

Given a StoredFile or its ID it will replace the current content
with the provided content value. If filename and content_type are
provided or can be deducted by the content itself they will also replace
the previous values, otherwise the current values are kept.

	
class depot.io.local.LocalFileStorage(storage_path)

	depot.io.interfaces.FileStorage implementation that stores files locally.

All the files are stored inside a directory specified by the storage_path parameter.

	
create(content, filename=None, content_type=None)

	Saves a new file and returns the ID of the newly created file.

content parameter can either be bytes, another file object
or a cgi.FieldStorage. When filename and content_type
parameters are not provided they are deducted from the content itself.

	
delete(file_or_id)

	Deletes a file. If the file didn’t exist it will just do nothing.

	
exists(file_or_id)

	Returns if a file or its ID still exist.

	
get(file_or_id)

	Opens the file given by its unique id.

This operation is guaranteed to return
a StoredFile instance or should raise IOError
if the file is not found.

	
list()

	Returns a list of file IDs that exist in the Storage.

Depending on the implementation there is the possibility that this returns more IDs
than there have been created. Therefore this method is NOT guaranteed to be RELIABLE.

	
replace(file_or_id, content, filename=None, content_type=None)

	Replaces an existing file, an IOError is raised if the file didn’t already exist.

Given a StoredFile or its ID it will replace the current content
with the provided content value. If filename and content_type are
provided or can be deducted by the content itself they will also replace
the previous values, otherwise the current values are kept.

	
class depot.io.gridfs.GridFSStorage(mongouri, collection='filedepot')

	depot.io.interfaces.FileStorage implementation that stores files on MongoDB.

All the files are stored using GridFS to the database pointed by the mongouri parameter into
the collection named collection.

	
create(content, filename=None, content_type=None)

	Saves a new file and returns the ID of the newly created file.

content parameter can either be bytes, another file object
or a cgi.FieldStorage. When filename and content_type
parameters are not provided they are deducted from the content itself.

	
delete(file_or_id)

	Deletes a file. If the file didn’t exist it will just do nothing.

	
exists(file_or_id)

	Returns if a file or its ID still exist.

	
get(file_or_id)

	Opens the file given by its unique id.

This operation is guaranteed to return
a StoredFile instance or should raise IOError
if the file is not found.

	
list()

	Returns a list of file IDs that exist in the Storage.

Depending on the implementation there is the possibility that this returns more IDs
than there have been created. Therefore this method is NOT guaranteed to be RELIABLE.

	
replace(file_or_id, content, filename=None, content_type=None)

	Replaces an existing file, an IOError is raised if the file didn’t already exist.

Given a StoredFile or its ID it will replace the current content
with the provided content value. If filename and content_type are
provided or can be deducted by the content itself they will also replace
the previous values, otherwise the current values are kept.

	
class depot.io.boto3.S3Storage(access_key_id, secret_access_key, bucket=None, region_name=None, policy=None, storage_class=None, endpoint_url=None, prefix='')

	depot.io.interfaces.FileStorage implementation that stores files on S3.

This is a version implemented on top of boto3.
Installing boto3 as a dependency is required to use this.

All the files are stored inside a bucket named bucket on host which Depot
connects to using access_key_id and secret_access_key.

	Additional options include:

	
	region which can be used to specify the AWS region.

	endpoint_url which can be used to specify an host different from Amazon
AWS S3 Storage

	policy which can be used to specify a canned ACL policy of either
private or public-read.

	storage_class which can be used to specify a class of storage.

	prefix parameter can be used to store all files under
specified prefix. Use a prefix like dirname/ (see trailing slash)
to store in a subdirectory.

	
create(content, filename=None, content_type=None)

	Saves a new file and returns the ID of the newly created file.

content parameter can either be bytes, another file object
or a cgi.FieldStorage. When filename and content_type
parameters are not provided they are deducted from the content itself.

	
delete(file_or_id)

	Deletes a file. If the file didn’t exist it will just do nothing.

	
exists(file_or_id)

	Returns if a file or its ID still exist.

	
get(file_or_id)

	Opens the file given by its unique id.

This operation is guaranteed to return
a StoredFile instance or should raise IOError
if the file is not found.

	
list()

	Returns a list of file IDs that exist in the Storage.

Depending on the implementation there is the possibility that this returns more IDs
than there have been created. Therefore this method is NOT guaranteed to be RELIABLE.

	
replace(file_or_id, content, filename=None, content_type=None)

	Replaces an existing file, an IOError is raised if the file didn’t already exist.

Given a StoredFile or its ID it will replace the current content
with the provided content value. If filename and content_type are
provided or can be deducted by the content itself they will also replace
the previous values, otherwise the current values are kept.

	
class depot.io.awss3.S3Storage(access_key_id, secret_access_key, bucket=None, host=None, policy=None, encrypt_key=False, prefix='')

	depot.io.interfaces.FileStorage implementation that stores files on S3.

This is a version implemented on boto
Installing boto as a dependency is required to use this.

All the files are stored inside a bucket named bucket on host which Depot
connects to using access_key_id and secret_access_key.

	Additional options include:

	
	host which can be used to specify an host different from Amazon
AWS S3 Storage

	policy which can be used to specify a canned ACL policy of either
private or public-read.

	encrypt_key which can be specified to use the server side
encryption feature.

	prefix parameter can be used to store all files under
specified prefix. Use a prefix like dirname/ (see trailing slash)
to store in a subdirectory.

	
create(content, filename=None, content_type=None)

	Saves a new file and returns the ID of the newly created file.

content parameter can either be bytes, another file object
or a cgi.FieldStorage. When filename and content_type
parameters are not provided they are deducted from the content itself.

	
delete(file_or_id)

	Deletes a file. If the file didn’t exist it will just do nothing.

	
exists(file_or_id)

	Returns if a file or its ID still exist.

	
get(file_or_id)

	Opens the file given by its unique id.

This operation is guaranteed to return
a StoredFile instance or should raise IOError
if the file is not found.

	
list()

	Returns a list of file IDs that exist in the Storage.

Depending on the implementation there is the possibility that this returns more IDs
than there have been created. Therefore this method is NOT guaranteed to be RELIABLE.

	
replace(file_or_id, content, filename=None, content_type=None)

	Replaces an existing file, an IOError is raised if the file didn’t already exist.

Given a StoredFile or its ID it will replace the current content
with the provided content value. If filename and content_type are
provided or can be deducted by the content itself they will also replace
the previous values, otherwise the current values are kept.

	
class depot.io.memory.MemoryFileStorage(**kwargs)

	depot.io.interfaces.FileStorage implementation that keeps files in memory.

This is generally useful for caches and tests.

	
create(content, filename=None, content_type=None)

	Saves a new file and returns the ID of the newly created file.

content parameter can either be bytes, another file object
or a cgi.FieldStorage. When filename and content_type
parameters are not provided they are deducted from the content itself.

	
delete(file_or_id)

	Deletes a file. If the file didn’t exist it will just do nothing.

	
exists(file_or_id)

	Returns if a file or its ID still exist.

	
get(file_or_id)

	Opens the file given by its unique id.

This operation is guaranteed to return
a StoredFile instance or should raise IOError
if the file is not found.

	
list()

	Returns a list of file IDs that exist in the Storage.

Depending on the implementation there is the possibility that this returns more IDs
than there have been created. Therefore this method is NOT guaranteed to be RELIABLE.

	
replace(file_or_id, content, filename=None, content_type=None)

	Replaces an existing file, an IOError is raised if the file didn’t already exist.

Given a StoredFile or its ID it will replace the current content
with the provided content value. If filename and content_type are
provided or can be deducted by the content itself they will also replace
the previous values, otherwise the current values are kept.

Utilities

	
depot.io.utils.file_from_content(content)

	Provides a real file object from file content

Converts FileStorage, FileIntent and
bytes to an actual file.

	
class depot.io.utils.FileIntent(fileobj, filename, content_type)

	Represents the intention to upload a file

Whenever a file can be stored by depot, a FileIntent
can be passed instead of the file itself. This permits
to easily upload objects that are not files or to add
missing information to the uploaded files.

 Python Module Index

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 depot	

 	
 	
 depot.fields	

 	
 	
 depot.fields.filters	

 	
 	
 depot.fields.specialized	

 	
 	
 depot.io.interfaces	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	after_flush() (depot.fields.ming.DepotExtension method)

B

 	
 	before_flush() (depot.fields.ming.DepotExtension method)

C

 	
 	close() (depot.io.interfaces.StoredFile method)

 	closed (depot.io.interfaces.StoredFile attribute)

 	configure() (depot.manager.DepotManager class method)

 	create() (depot.io.awss3.S3Storage method)

 	(depot.io.boto3.S3Storage method)

 	(depot.io.gridfs.GridFSStorage method)

 	(depot.io.interfaces.FileStorage method)

 	(depot.io.local.LocalFileStorage method)

 	(depot.io.memory.MemoryFileStorage method)

D

 	
 	delete() (depot.io.awss3.S3Storage method)

 	(depot.io.boto3.S3Storage method)

 	(depot.io.gridfs.GridFSStorage method)

 	(depot.io.interfaces.FileStorage method)

 	(depot.io.local.LocalFileStorage method)

 	(depot.io.memory.MemoryFileStorage method)

 	depot.fields (module)

 	
 	depot.fields.filters (module)

 	depot.fields.specialized (module)

 	depot.io.interfaces (module)

 	DepotExtension (class in depot.fields.ming)

 	DepotFileInfo (class in depot.fields.interfaces)

 	DepotManager (class in depot.manager)

 	DepotMiddleware (class in depot.middleware)

E

 	
 	exists() (depot.io.awss3.S3Storage method)

 	(depot.io.boto3.S3Storage method)

 	(depot.io.gridfs.GridFSStorage method)

 	(depot.io.interfaces.FileStorage method)

 	(depot.io.local.LocalFileStorage method)

 	(depot.io.memory.MemoryFileStorage method)

F

 	
 	file_from_content() (in module depot.io.utils)

 	FileFilter (class in depot.fields.interfaces)

 	fileid() (depot.io.interfaces.FileStorage static method)

 	fileinfo() (depot.io.interfaces.FileStorage static method)

 	
 	FileIntent (class in depot.io.utils)

 	fileno() (depot.io.interfaces.StoredFile method)

 	FileStorage (class in depot.io.interfaces)

 	flush() (depot.io.interfaces.StoredFile method)

 	from_config() (depot.manager.DepotManager class method)

G

 	
 	get() (depot.io.awss3.S3Storage method)

 	(depot.io.boto3.S3Storage method)

 	(depot.io.gridfs.GridFSStorage method)

 	(depot.io.interfaces.FileStorage method)

 	(depot.io.local.LocalFileStorage method)

 	(depot.io.memory.MemoryFileStorage method)

 	(depot.manager.DepotManager class method)

 	
 	get_default() (depot.manager.DepotManager class method)

 	get_file() (depot.manager.DepotManager class method)

 	GridFSStorage (class in depot.io.gridfs)

I

 	
 	impl (depot.fields.sqlalchemy.UploadedFileField attribute)

 	
 	isatty() (depot.io.interfaces.StoredFile method)

L

 	
 	list() (depot.io.awss3.S3Storage method)

 	(depot.io.boto3.S3Storage method)

 	(depot.io.gridfs.GridFSStorage method)

 	(depot.io.interfaces.FileStorage method)

 	(depot.io.local.LocalFileStorage method)

 	(depot.io.memory.MemoryFileStorage method)

 	
 	load_dialect_impl() (depot.fields.sqlalchemy.UploadedFileField method)

 	LocalFileStorage (class in depot.io.local)

M

 	
 	make_middleware() (depot.manager.DepotManager class method)

 	
 	MemoryFileStorage (class in depot.io.memory)

N

 	
 	name (depot.io.interfaces.StoredFile attribute)

 	
 	next (depot.io.interfaces.StoredFile attribute)

O

 	
 	on_save() (depot.fields.interfaces.FileFilter method)

P

 	
 	process_bind_param() (depot.fields.sqlalchemy.UploadedFileField method)

 	process_content() (depot.fields.interfaces.DepotFileInfo method)

 	(depot.fields.upload.UploadedFile method)

 	
 	process_result_value() (depot.fields.sqlalchemy.UploadedFileField method)

 	public_url (depot.io.interfaces.StoredFile attribute)

R

 	
 	read() (depot.io.interfaces.StoredFile method)

 	readable() (depot.io.interfaces.StoredFile method)

 	readline() (depot.io.interfaces.StoredFile method)

 	readlines() (depot.io.interfaces.StoredFile method)

 	replace() (depot.io.awss3.S3Storage method)

 	(depot.io.boto3.S3Storage method)

 	(depot.io.gridfs.GridFSStorage method)

 	(depot.io.interfaces.FileStorage method)

 	(depot.io.local.LocalFileStorage method)

 	(depot.io.memory.MemoryFileStorage method)

S

 	
 	S3Storage (class in depot.io.awss3)

 	(class in depot.io.boto3)

 	seek() (depot.io.interfaces.StoredFile method)

 	
 	seekable() (depot.io.interfaces.StoredFile method)

 	set_default() (depot.manager.DepotManager class method)

 	StoredFile (class in depot.io.interfaces)

T

 	
 	tell() (depot.io.interfaces.StoredFile method)

 	
 	truncate() (depot.io.interfaces.StoredFile method)

U

 	
 	UploadedFile (class in depot.fields.upload)

 	UploadedFileField (class in depot.fields.sqlalchemy)

 	
 	UploadedFileProperty (class in depot.fields.ming)

 	UploadedImageWithThumb (class in depot.fields.specialized.image)

 	url_for() (depot.manager.DepotManager class method)

W

 	
 	WithThumbnailFilter (class in depot.fields.filters.thumbnails)

 	
 	writable() (depot.io.interfaces.StoredFile method)

_static/up.png

nav.xhtml

 Table of Contents

 		
 DEPOT - File Storage Made Easy

 		
 Getting Started with Depot

 		
 Configuring DepotManager

 		
 Getting a Storage

 		
 Save and Manage Files

 		
 Saving and Retrieving Files

 		
 Replacing and Deleting Files

 		
 Storing data as files

 		
 Depot for the Web

 		
 File Metadata

 		
 Serving Files on HTTP

 		
 Handling Multiple Storages

 		
 Using Multiple Storages

 		
 Switching Default Storage

 		
 Replacing a Storage through Aliases

 		
 Performing Backups between Storages

 		
 Depot with Database

 		
 Attaching to Models

 		
 Uploaded Files Information

 		
 Uploading on a Specific Storage

 		
 Session Awareness

 		
 Custom Behaviour in Attachments

 		
 Attachment Filters

 		
 Custom Attachments

 		
 API Reference

 		
 Application Support

 		
 Database Support

 		
 Filters

 		
 Specialized FileTypes

 		
 Storing Files

 		
 Utilities

_static/down.png

_static/comment.png

_static/down-pressed.pn